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We present a method for constructing parent Hamiltonians for the chiral spin liquid. We find two distinct
Hamiltonians for which the chiral spin liquid on a square lattice is an exact zero-energy ground state. We
diagonalize both Hamiltonians numerically for 16-site lattices, and find that the chiral spin liquid, modulo its
twofold topological degeneracy, is indeed the unique ground state for one Hamiltonian, while it is not unique
for the other.
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I. INTRODUCTION

The first notion of fractional excitations in condensed-
matter physics goes back to the appearance of soliton midgap
modes in polyacetylene,1 where the effective net charge of
one kink excitation is e /2, i.e., one half of the electron
charge. At a similar time, the field of fractional statistics,
founded in the work by Leinaas and Myrheim,2 attained
broad attention due to the work by Wilczek in 1982.3,4 In
strongly correlated many-body systems, the phenomenon of
fractionalization, where the elementary excitations of the
system carry only a fraction of the quantum numbers of the
constituents, has become known to occur in a variety of
cases.

The first physical system in which fractional excitations
and the associated fractional statistics have been discussed
on a unified footing is the fractional quantum-Hall effect5–7

�FQHE�. There, the quantum statistics of the anyonic quasi-
particles can be understood in terms of a generalized Berry’s
phase,8 which is acquired by the wave function as quasipar-
ticles wind around each other. This is a sensible concept in
two dimensions only where one can uniquely define a wind-
ing number for the braiding. In the FQHE, the fractional
statistics is known to occur in the presence of a magnetic
field violating parity �P� and time-reversal �T� symmetry. In
recent years, there have been tremendous efforts to study the
fractional excitations of the FQHE experimentally in order to
confirm the prediction from theory and to validate fractional
statistics as a concept being realized in nature. This, how-
ever, has remained inconclusive in certain aspects and thus is
still a subject of current discussion and work.9–13

Later, the concept of fractional statistics has been found to
occur in one-dimensional spin-1/2 antiferromagnets, where it
can be defined in terms of a generalized Pauli principle
obeyed by the excitations14 and, as shown recently, by a
phase the wave function acquires when two spinons move
through each other.15 The fractional charge of the quasipar-
ticles in the FQHE corresponds to the spin 1/2 of the elemen-
tary spinon excitations in these systems, which is fractional
as the Hilbert space is built up by spin flips which carry spin
1. As one-dimensional systems are amenable to a host of
exact methods, many exactly solvable models exhibiting this
behavior exist.16–19 In particular, various properties of frac-

tional excitations in spin chains have been observed
experimentally.20–22

In general, it appears to be that P and T violations are
intimately related to the occurrence of excitations obeying
fractional statistics in two dimensions, which both applies to
quasiparticles in the FQHE and spinons in a quantum anti-
ferromagnet. �However, it should be noted that P, T invariant
systems can also allow for fractional statistics in principle,23

which was recently elaborated on for topological defects in
graphene24,25�. These symmetries may be violated either ex-
plicitly �as in the FQHE� or spontaneously. For two-
dimensional antiferromagnets, the concept of fractional exci-
tations is less established than for the one-dimensional
case.26 In particular, finding solvable theoretical models in
which the phenomenon occurs has been one predominant
area of research in the field. Significant progress has been
accomplished for dimer models.27,28

In addition to important questions with regard to the gen-
eral principle underlying fractional statistics, two-
dimensional spin liquids are of special interest with regard to
investigation of the hypothesized link between fractionaliza-
tion and high-Tc superconductivity.29,30 Moreover, in many
systems where fractionalization occurs, there is the ambition
to use the topological degeneracy contained in these systems
for quantum computing, where topological information can
serve as a quantum bit with negligibly small local-
decoherence rates.31

The paradigmatic state for a S=1 /2 spin liquid is the
chiral spin liquid �CSL� introduced by Kalmeyer and
Laughlin,32,33 which is constructed to spontaneously violate
the symmetries P and T, and can be defined on any regular
lattice including both bipartite and nonbipartite lattices. The
universality class of chiral spin liquid states, and in particular
the order parameter and the topological degeneracy,34 were
defined by Wen, Wilczek, and Zee.35 A CSL state has also
been constructed by Yao and Kivelson36 in the Kitaev
model37 on a Fisher lattice, i.e., a honeycomb lattice of tri-
angles. Recently, a family of non-Abelian CSL states38 has
been proposed for general spin S, whose wave functions cor-
respond to the bosonic Read-Rezayi series of FQH states.39

As in the one-dimensional case mentioned above, the
spinons in the CSL exhibit quantum-number fractionalization
and carry only half the spin of the bosonic spin excitations in
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conventional magnetically ordered systems, which carry spin
1. Whereas the spinon appears to be the fundamental field
describing excitations in two-dimensional S=1 /2 antiferro-
magnets in general, an effective description by magnonlike
excitations proved rather adequate for the generic model.
The reason for this is that the confinement between the
spinons is generically so strong that the underlying excitation
structure is mostly suppressed. In the CSL, however, the
spinons are deconfined. The model is hence ideally suited to
study fractional quantization of spinons in two-dimensional
antiferromagnets. In spite of its promising properties, for
nearly two decades since its emergence, the CSL lacked a
microscopic model where it is realized. Baskaran40 has
shown that it is not possible to stabilize long-range chiral
order with nearest-neighbor Heisenberg interactions only.

In this article, we develop an analytical method for the
construction of parent Hamiltonians for the CSL. The
method relies explicitly on the singlet property of the CSL,
as this allows for a spherical tensor decomposition of the
destruction operator we introduce. From different tensor
components, we construct two different parent Hamiltonians,
which annihilate the CSL and hence have it as a zero-energy
ground state. One of the Hamiltonians has been presented in
a Letter previously;41 both Hamiltonians contain six-body
interactions. One of the key issues we address here is
whether the CSL is the only ground state of these Hamilto-
nians. To answer this question, we perform exact diagonal-
ization studies of both models for a 16-site square lattice. In
particular, we introduce an adapted kernel-sweeping method,
which allows for an efficient numerical implementation of
the complex and technically cumbersome Hamiltonians we
investigate. We find that the model we introduced previously
has indeed the CSL as its �modulo the twofold topological
degeneracy� unique ground state. For the other Hamiltonian
we present, however, we find that the CSL is not the unique
ground state. Hence only the former model is useful for fur-
ther analysis of, e.g., the spinon spectrum.

The paper is organized as follows. In Sec. II, we review
the chiral spin liquid ground state and its basic properties.
After outlining the general construction scheme for the
Hamiltonians in Sec. III, we formulate a destruction operator
for the CSL state in Sec. IV and exploit the spin-rotational
invariance of the CSL state to decompose the destruction
operator into its spherical tensor components, which annihi-
late the CSL state individually. The proof that the destruction
operator annihilates the CSL ground state is given in Sec. V.
In Sec. VI, we introduce a Kernel-sweeping method to com-
pute the CSL Hamiltonians. We present the method in detail
and emphasize its applicability to efficiently compute n-body
interactions for finite-size exact diagonalization studies. The
numerical results obtained with this method are discussed in
Sec. VII. We conclude this work with a summary in Sec.
VIII.

II. CHIRAL SPIN LIQUID

The CSL was originally conceived as a spin liquid con-
structed by condensing the bosonic spin-flip operators on a
two-dimensional lattice into a FQH liquid at Landau-level

filling factor �=1 /2. The ground-state wave function for a
circular droplet with open-boundary conditions, on a square
lattice with lattice constant of length one, is given by32,33

�z1 ¯ zM��� = �
j�k

M

�zj − zk�2�
j=1

M

G�zj�e−�/2�zj�
2
, �1�

where M =N /2. The z’s in the above expression are the com-
plex positions of the up spins on the lattice: z=x+ iy, with x
and y integer. G�z�= �−1��x+1��y+1� is a gauge factor, which
ensures that Eq. �1� is a spin singlet �see Fig. 1�. Lattice sites
not occupied by z’s correspond to down spins.

For our purposes, it is propitious to choose periodic
boundary conditions �PBCs� with equal periods L1=L2=L, L
even, and with N=L2 sites. Following Haldane and Rezayi,42

the wave function for the CSL then takes the form

�z1 ¯ zM��� = �
�=1

2

�1��

L
�Z − Z�	


��
j�k

M

�1��

L
�zj − zk	
2

· �
j=1

M

G�zj�e�/2�zj
2−�zj�

2�,

�2�

where �1�w�=−�1�−w���1�w �e−�� is the odd Jacobi theta
function.43 The zeros of the center-of-mass coordinate Z
=� jzj must satisfy Z1+Z2=0; the freedom to choose Z1 re-
flects the topological degeneracy and yields two linearly in-
dependent ground states for the CSL. These states are spin
singlets, are invariant under lattice translations, and are
strictly periodic with regard to the PBCs.

III. GENERAL METHOD

In order to construct a parent Hamiltonian for the chiral
spin liquid, one first derives the destruction operators for the
ground state. In our formulation, the destruction operators
are constructed from a set of operators � j where j

L

L

FIG. 1. The model is defined on a square-lattice length L on a
side such that the total number of sites is given by N=L2. The
image shows the lattice for N=16. The shaded circles �including the
origin� indicate those lattice sites for which G�z�=−1 and the open
circles those sites for which G�z�=+1. The sites on which G�z�=
−1 define a sublattice with twice the original lattice spacing; the
doubled unit cell is shown as the shaded region in the figure sur-
rounding the origin.
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=1, . . . ,N indexes the lattice sites. The operators � j, to be
introduced in Sec. IV below, are not themselves destruction
operators, but have the property that, acting on the ground
state, they produce a result independent of the site index j:
�i���=� j���. Therefore, once the above result is established
in Sec. V, it follows that the difference of any two of the
operators is a destruction operator for the ground state: dij
=�i−� j.

In order to construct a sensible parent Hamiltonian, one
must minimally demand that it be a translationally invariant
scalar operator. In order to put the Hamiltonian in this form,
it is shown in Appendix A that the operators may be written
as � j =� j

0+� j
0 where � j and � j are vector and third-rank

spherical tensor operators, respectively, and where the 0 su-
perscript indicates the component in spherical notation. The
operators � j and � j are given explicitly in terms of spin
operators in Secs. IV A and IV B.

As is discussed in detail in Sec. IV, the Wigner-Eckhart
theorem guarantees that all components of the operators
Dij =�i−� j as well as Dij =�i−� j are destruction operators
for the chiral spin liquid ground state so long as the reducible
tensor operator dij is. One can then construct Hamiltonians
based on either set of operators

H = �
�ij�

Dij
† · Dij �3�

for the vector-destruction operators or

H = �
�ij�

�
�=−3

3

�Dij
� �†Dij

� �4�

for the rank-3 spherical tensor operators. Either Hamiltonian
is a scalar and is translationally invariant, both of these prop-
erties guaranteed by the construction. Additionally, since the
Hamiltonians are positive semidefinite, the chiral spin liquid
is a ground state of the model. It should be noted that these
models are not themselves unique as one could include any
coefficients Jij into the sums of Eqs. �3� and �4� and remove
the restriction that only nearest-neighbor sites are summed
over. These two models do, however, represent the simplest
models from each class.

In Sec. VI, a numerical method is developed for perform-
ing the exact diagonalization of these Hamiltonians that can
handle the large number of interactions efficiently. This
method is used in Sec. VII to show that the model given by
Eq. �3� has exactly two ground states, as expected due to the
topological degeneracy of the chiral spin liquid on a torus,
and that these states are precisely the chiral spin liquid
ground states given in Sec. II above. Adopting the same pro-
cedure, the Hamiltonian given in Eq. �4� is shown to have a
larger ground-state manifold which is not exhausted by the
chiral spin liquid ground states.

IV. ANNIHILATION OPERATOR FOR THE
CHIRAL SPIN LIQUID

The Hamiltonian which stabilizes the chiral spin liquid is
generated by first finding a set of operators �i, where i is a
site index. These operators are not themselves destruction

operators, but the bond operators �i−� j, where i and j are
any two distinct sites, will be shown to destroy the CSL
ground state. The operators may be written as � j =� j

+−� j
−,

where � j
+=Tj +Vj and

Tj =
1

2 �
ik�j

�
KijkSj

+Sk
−�1

2
+ Si

z
 , �5�

Vj = �
i�j

Uij�1

2
+ Si

z
�1

2
+ Sj

z
 . �6�

The two sets of coefficients Uij and Kijk are defined in Sec.
IV C below and the prime on the sum indicates that one must
exclude the coincidences of i and k.

The operator � j
− is related to � j

+ by a � rotation about the
x axis that maps Sz and Sy into −Sz and −Sy. This means that
the entire operator � j is given by

� j = �
ik�j

�
Kijk
 1

2i
�S j � Sk�z + �S j · Sk�Si

z − Si
zSj

zSk
z� + �

i�j

UijSi
z.

�7�

In writing down Eq. �7�, the fact that �i�jUij =0, has been
employed. This will be demonstrated in Sec. IV C below.
While the operators �i are not themselves destruction opera-
tors for the CSL ground state, it will be shown in Sec. V that
dij =�i−� j is a destruction operator for the ground state for
any choice of i and j.

The operators � j are reducible and can be decomposed
into irreducible tensor operators, in this case of ranks 1 and
3. From Eq. �7� it is clear that every term except for the
Si

zSj
zSk

z term is the 0 �or z� component of a rank-1 �vector�
operator. This final term can be decomposed into rank-3 and
vector components.

It is straightforward to show that if an operator d is a
destruction operator for the CSL ground state then each of its
irreducible components are as well. This is because the
Wigner-Eckhart theorem tells us that acting with an operator
Tm

j on a state �nqmq� with angular-momentum q and z com-
ponents mq gives

Tm
j �nqmq� = �

j�m�

Cj
m

q
mq

j�
m��n�j�m�� , �8�

where n and n� are any quantum numbers other than angular
momentum. Since the CSL is a spin singlet: q=mq=0, it
follows that there is only a single nonzero term in the above
sum corresponding to j�= j and m�=m. This means that by
decomposing the destruction operator for the ground state d
into its tensor components, which may be written d=� jajT0

j ,
acting on the ground state to obtain

0 = d��� = �
j

aj�n�j0� �9�

and noting that states with different values of j are necessar-
ily orthogonal, it immediately follows that each of the states
in the sum is itself zero and hence the operators Tj are de-
struction operators for the ground state. In Secs. IV A and
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IV B we give two classes of operators that are obtained from
the reducible tensor operator � j in Eq. �7�.

A. Vector destruction operator

As shown in Appendix A, the operator Si
zSj

zSk
z may be

written as the sum of the 0 components of a vector and a
third-rank tensor. The vector component is given by

1

5
��Si · S j�Sk

z + �S j · Sk�Si
z + �Sk · Si�S j

z	 �10�

and, working from Eq. �7�, the vector operator � j is given
by

� j = �
i,k�j

�
Kijk
 1

2i
�S j � Sk� +

4

5
�S j · Sk�Si −

1

5
�Sk · Si�S j

−
1

5
�Si · S j�Sk� + �

i�j

UijSi. �11�

Since �i−� j is a destruction operator for the ground state, it
immediately follows that one may construct a Hamiltonian
for which the chiral spin liquid is the exact ground state as

H = �
�ij�

��i − � j�† · ��i − � j� , �12�

where the sum runs over all nearest neighbors on the lattice.
By construction, the Hamiltonian is a scalar operator and
translationally invariant.

However, note that there is nothing restricting possible
models to run only over next-nearest neighbors. Rather, one
can consider any combination of bond operators �including
arbitrary coefficients so long as one maintains positive
semidefiniteness in H� in constructing a parent Hamiltonian
for the CSL.

B. Tensor-destruction operator

It is also possible to create a set of third-rank tensor-
destruction operators. As shown in Appendix A, the operator
Si

zSj
zSk

z may be fully decomposed into the 0 components of a
vector operator �given in Eq. �10�	 and a third-rank tensor
operator, which is necessarily just the difference between
Si

zSj
zSk

z and the operator in Eq. �10�. This gives a destruction
operator whose 0 component is

� j
0 = −

1
�10

�
i,k�j

�
Kijk��Si · S j�Sk

z + �S j · Sk�Si
z

+ �Sk · Si�Sj
z − 5Si

zSj
zSk

z	 . �13�

The other components are straightforward to obtain �see Ap-
pendix A� and one may again use these operators to form a
Hamiltonian for the chiral spin liquid according to

H = �
�ij�

�
�=−3

3

��i
� − � j

��†��i
� − � j

�� . �14�

The Hamiltonian in Eq. �14� has two significant advantages
over the model in Eq. �12�: it depends only on one set of

coefficients �Kijk but not Uij� and, because the operator in the
sum in Eq. �13� is symmetric under interchange of i and k,
one may replace Kijk by Aijk= �Kijk+Kkji� /2, where the new
coefficients are manifestly symmetric in interchange of the
first and third indices. Unfortunately, it turns out that the
CSL is not the only ground state of this model, as will be
discussed in detail in Sec. VII.

C. Coefficients

The coefficients appearing in Eq. �7� are functions of the
distance between the sites of the form Kijk=K�zk−zj ,zi−zj�,
where

K�x,y� =
1

N/2 − 1
lim
R→	

�
0
�z0−x�
R

P�x − z0,y�
x − z0

�15�

and the sum over z0 is a sum over all lattice translations:
z0= �m+ in�L for m and n integers. This sum guarantees that
the function K�x ,y� is periodic in its first argument.

The coefficients Uij =�U���zj −zi	 /L� /L are given by

�

L
U��

L
z
 =

�

L
W��

L
z
 +

1

N − 2
� d

dx
P�x,− z��

0

+ lim
R→	

�
0��z0�
R

P�z0,− z�
z0

� , �16�

where W�z� is the periodic extension of 1 /z to the torus44 and
also related to the logarithmic derivatives of the theta func-
tions

�

L
W��

L
z
 =

d

dz
ln ���

L
z
 +

�

L

z − z�

2L
. �17�

The function P�x ,y� is given by

P�x,y� = lim
R→	

�
0
�z0−y�
R

Co� �

2L
�z0 − y	


Co� �

2L
�x − �y − z0�	


e−�/L2�z0 − y�2

n�y�
,

�18�

where Co�x�=cos x+cosh x and n�y� is a normalization fac-
tor chosen such that P�0,y�=1 which entails the choice

n�z� = �3���

L
Re�z	�i
�3���

L
Im�z	�i
 . �19�

While the form of the coefficients as given by Eqs. �15�–�17�
are essential for forming a Hamiltonian that stabilizes the
CSL, there is significant freedom in how one chooses the
function P�x ,y�. The only requirements are that it be a peri-
odic function of y, fall off faster than 1 /x with increasing x,
and be analytic apart from first-order poles that occur at the
coincidence of the two arguments: x=y. It is straightforward
to show that U�z� is an odd function; this in turn guarantees
that �iUij =0 and lets this sum be dropped, as was done in
writing down Eq. �7�.
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V. PROOF OF SOLUTION

In order to prove that either of the Hamiltonians given in
Eqs. �3� and �4� are true parent Hamiltonians for the chiral
spin liquid, we must demonstrate that � j���=�i��� which we
will demonstrate by first showing that

�z1 ¯ zM�� j��� = f�Z��z1 ¯ zM��� , �20�

where f�Z� is a function only of the center of mass: Z
=�i=1

M zi. This identity in turn follows from the fact that

�z1 ¯ zM�� j
+���

�z1 ¯ zM���
= � f�Z� zj � �z1 ¯ zM�

0 otherwise
� �21�

and the result that the function f�Z� is both odd and periodic.
To see this, recall that one can write � j

−=U� j
+U†, where U

performs the � rotation about the x axis as discussed in Sec.
IV above. The CSL ground state is invariant under such a
rotation so that

�z1 ¯ zM�� j
+��� = �z1 ¯ zM�U†� j

−U��� = �w1 ¯ wM�� j
−��� ,

�22�

where �wi�, the locations of the down spins on the lattice, is
the complement of �zi�. It then follows from Eq. �21� that

�z1 ¯ zM�� j
−���

�z1 ¯ zM���
= �0 zj � �z1 ¯ zM�

f�W� otherwise
.� �23�

Assuming that the origin of the lattice is chosen such that the
sites occupy positions zi= ��+ im� for � and m integer, it is
straightforward to show that

Z + W =
L�L − 1�

2
�1 + i�L �24�

and since L is even it follows that the sum of Z and W is
equivalent to a translation of the lattice z0. Because the func-
tion f�Z� is periodic and odd, both properties will be shown
below, it immediately follows that f�W�= f�z0−Z�=−f�Z�.
Combining this fact with Eq. �23� completes the proof that
Eq. �21� entails Eq. �20�.

A. Action of Tj

In order to prove Eq. �21�, we first consider the off-
diagonal terms in the operator � j

+ which come from Tj de-
fined in Eq. �5�. We consider a general element of the vector
Tj���

�z1 ¯ zM�Tj��� =
1

2 �
i,k�j

�
Kijk�z1 ¯ zM�Sj

+Sk
−�1

2
+ Si

z
��� .

�25�

The element is clearly zero unless zj � �z1¯zM�. When this
is satisfied, acting onto the bra on the right-hand side of the
equation with the spin operators wipes out the matrix ele-
ment unless zi� �z1¯zM� and replaces zj with zk

�z1 ¯ zM�Tj��� =
1

2�
i�j

M

�
k�j

N

Kijk�z1 ¯ zj−1zkzj+1 ¯ zM��� .

�26�

The upper limit of M =N /2 �rather than N� on the sum on i
indicates that zi must be a member of the up spins. Rewriting
Kijk=K�zk−zj ,zi−zj� and defining z=zk−zj, this may be re-
written as

�z1 ¯ zM�Tj��� =
1

2�
i�j

M

�
z�0

K�z,zi − zj��z1 ¯ zj + z ¯ zM��� .

�27�

Using the definition of the coefficient K from Eq. �15�, this
can be rewritten as

�z1 ¯ zM�Tj���

=
1

N − 2�
i�j

M

�
z�0


 lim
R→	

�
0
�z0−x��R

P�z − z0,zi − zj�
z − z0

�
��z1 ¯ zj + z ¯ zM��� . �28�

Since the wave function itself is periodic, the two sums over
z and over z0 may be combined into a single sum that runs
over the entire infinite lattice for which we use the variable
x=z−z0. However, since the point z=0 is missing from the
original sum, all of its images in the infinite lattice will be
missing from the second sum and this must be subtracted off,
giving

�z1 ¯ zM�Tj��� =
1

N − 2�
i�j

M 
 lim
R→	

�
0��x��R

P�x,zi − zj�
x

��z1 ¯ zj + x ¯ zM����
−

1

N − 2�
i�j

M

�
z0

P�− z0,zi − zj�
− z0

�z1 ¯ zM��� .

�29�

Dividing both sides of the equation by �z1¯zM ��� and re-
writing the ratio of elements in terms of the analytic function
of x, A�x� given in Appendix C yields

�z1 ¯ zM�Tj���
�z1 ¯ zM���

= −
1

N − 2�
i�j

M

lim
R→	

�
0��x��R

�
P�x,zi − zj�

x
A�x�G�x�e−�/2�x�2

−
1

N − 2�
i�j

M

�
z0

P�z0,zi − zj�
z0

. �30�

Note that A�x� is an analytic function only of x and not of the
remaining �zi� on which it also depends. The first sum in Eq.
�30� may be evaluated with the corollary to the singlet sum
rule, Eq. �B13�. A derivation of the sum rule and the neces-
sary corollary is given in Appendix B. The function P�x ,y�
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falls off exponentially with increasing x while the quantity
A�x�G�x�e−�/2�x�2 is essentially constant due to the periodicity
of the wave function. This guarantees that the sum is abso-
lutely convergent and the sum rule may be applied. Addition-
ally, the product P�x ,zi−zj�A�x� is itself an analytic function
of x. As a function of x, the function P�x ,zi−zj� necessarily
has poles. However, these occur when x=zi−zj and the func-
tion A�x� has second-order zeroes at these locations since this
corresponds to a coincidence of up spins. Since the product
is analytic and the sum is absolutely convergent, the singlet
sum rule may be applied to give

�z1 ¯ zM�Tj���
�z1 ¯ zM���

= −
1

N − 2�
i�j

M � d

dx
�P�x,zi − zj�A�x�	�

0

−
1

N − 2�
i�j

M

�
z0

P�z0,zi − zj�
z0

. �31�

Using the fact that A�0�= P�0,zi−zj�=1 and the relation for
dA /dx given in Eq. �C9�, this becomes

�z1 ¯ zM�Tj���
�z1 ¯ zM���

= −
1

N − 2 �
i�k,j

M ��
�=1

2
�

L
W��

L
�Z − Z�	


+ 2�
��j

M
�

L
W��

L
�zj − z�	
 + � d

dx
�P�x,zi − zj��

0
�

−
1

N − 2 �
i�j,k

M

�
z0

P�z0,zi − zj�
z0

. �32�

The sum on i may be completed for the terms containing the
W functions �picking up a factor of M =N /2−1� and this
gives, renaming � as i

�z1 ¯ zM�Tj���
�z1 ¯ zM���

= f�Z� − �
i�j

M
�

L
W��

L
�zj − zi	


−
1

N − 2�
i�j

M 
�
z0

P�z0,zi − zj�
z0

+ � d

dx
P�x,zi − zj��

0
� ,

�33�

where

f�Z� = −
1

2�
�=1

2
�

L
W��

L
�Z − Z�	
 . �34�

The fact that f�Z� is both odd and periodic, required for the
proof of Eq. �20� above, follows from these same properties
of the W function. Comparison with Eq. �16� shows that

�z1 ¯ zM�Tj���
�z1 ¯ zM���

= f�Z� − �
i�j

M

Uij �35�

if zj is an element of the up spins and zero otherwise.

B. Action of Vj

The action of the operator Vj on the CSL ground state is
straightforward to compute. Proceeding in an analogous
manner, we have

�z1 ¯ zM�Vj��� = �
i�j

N

Uij�z1 ¯ zM��1

2
+ Si

z
�1

2
+ Sj

z
��� .

�36�

The matrix element vanishes unless both zi and zj are ele-
ments of �z1¯zM�. Therefore, the diagonal contribution to
the operator � j gives

�z1 ¯ zM�Vj���
�z1 ¯ zM���

= �
i�j

M

Uij �37�

if zj � �z1¯zM� and 0 otherwise. Combining Eqs. �37� and
�35� yields Eq. �21� and therefore proves that the chiral spin
liquid is an exact ground state of either of the Hamiltonians
in Eq. �12� and �14�.

VI. KERNEL-SWEEPING METHOD

To implement the Hamiltonians given in Eqs. �12� and
�14�, one has to take into account that six-body terms appear
in the Hamiltonians. For microscopic models containing
many-body interactions, one must be very efficient if one
hopes to write down the Hamiltonian in a reasonable amount
of time. For our Hamiltonians, this is because there are, even
for a lattice with only N=16 sites, literally thousands of
terms in the Hamiltonian corresponding to all the different
ways to choose six sites out of sixteen. In contrast, a model
with only two-site interactions on the same lattice would
only have 15 terms to compute after taking into account
translational symmetry, even if the model had infinite range.
In this section, we describe an algorithm for calculating the
Hamiltonian very efficiently, called the kernel-sweeping
method.

As an example to illustrate the kernel-sweeping method,
we will consider the computation of a Heisenberg-type
Hamiltonian such as

H = �
ij

JijSi · S j . �38�

We work in an Sz basis and label the states by a binary
number where up spins are treated as 1s and down spins are
treated as 0s. We first note that since this is a two-site inter-
action, in order to implement this model all we really need to
know is how the operator Si ·S j acts on the four-dimensional
basis �sisj�. This action may be summarized as

�↓↓� �↓↑� �↑↓� �↑↑�
1/4 0 0 0 �↓↓�
0 − 1/4 1/2 0 �↓↑�
0 1/2 − 1/4 0 �↑↓�
0 0 0 1/4 �↑↑�

, �39�

where the table format shows the order of the basis vectors.
It is only necessary to compute this matrix once at the be-
ginning of running the code. One stores this matrix as a set
of rules
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R = ���s�m,�s�n	 → �mn� , �40�

where �s�m and �s�n are the binary shorthands for the states in
this two-dimensional basis and �mn are the elements in the
matrix. In this example we would have

R = ��00,00	 →
1

4
,�01,01	 → −

1

4
,�01,10	 →

1

2
,�10,10	

→ −
1

4
,�11,11	 →

1

2
� , �41�

where, since we are dealing with a Hermitian operator, we
only need to include the upper triangle. The extension of this
array to a p-site operator is straightforward; in that case one
must consider the action of the operator on a 2p-dimensional
basis. Therefore, the corresponding operator for the chiral
spin liquid Hamiltonian given in Eq. �12� is 64 dimensional.

The code next loops over all possible values of i and j and
does the following. First it computes

Rij = ���s�m · �2i−1,2 j−1�,�s�n · �2i−1,2 j−1�	 → Jij�mn� .

�42�

All this means is to compute the contribution of the two
spins at sites i and j to the binary number that will label the
entire state. For our example, assuming that we are at a point
in the loop where i=3 and j=7, this gives

R37 = ��0,0	 →
J37

4
,�26,26	 → −

J37

4
,�26,22	 →

J37

2
,�22,22	

→ −
J37

4
,�22 + 26,22 + 26	 →

J37

4
� . �43�

The code next computes the contributions to the binary num-
bers labeling the states from all the sites that are not involved
in the interaction. There are 2N−p of these and for our two-
site example this list is

Bij = � �
l�i,j

N

sl2
l−1� . �44�

Finally, one updates the Hamiltonian according to

H = H + Rij � Bij , �45�

where the addition means to add the matrix defined by these
rules and the generalized outer product means

Rij � Bij = ���s�m · �2i−1,2 j−1� + b,�s�n · �2i−1,2 j−1� + b	

→ Jij�mn� �46�

for b an element of Bij. In this way one may construct the
Hamiltonian extremely quickly since all the steps involve list
operations and there is only a single loop over the N choose
two ways to pick the sites i and j. �In practice, one uses
translational invariance to fix i=1 and, for a two-site opera-
tor as in this example, the loop is then over the N−1 ways to
choose the remaining site.�

Let us now work this out explicitly for the vector Hamil-
ton operator Eq. �12�. Setting Dij =�i−� j, we split up the
Hamiltonian into

H = �
�ij�

�ij
z,†�ij

z +
1

2
��ij

+,†�ij
+ + �ij

−,†�ij
−� , �47�

where the z component as well as the ladder components of
the vector operators can be written out in terms of spin op-
erators Sz, S+=Sx+ iSy, and S−=Sx− iSy. As the treatment is
very similar, we constrain our attention to the contribution
��ij��ij

+,†�ij
+, where for clarity we again write out the + lad-

der operator explicitly

� j
+ = �

i,k�j

�
Kijk
 1

4i
�Sj

zSk
+ − Sj

+Sk
z� +

4

5
�S j · Sk�Si

+ −
1

5
�Sk · Si�Sj

+

−
1

5
�Si · S j�Sk

+� + �
i�j

UijSi
+. �48�

Using the notation analogous to Eq. �44�

Bijk
k = � �

l�i,j,k

N

sl2
l−1� Bi

u = ��
l�i

N

sl2
l−1� , �49�

we can write

� j
+ = �

i

i�j

 �

k

k�i,j

Rijk
k

� Bijk
k + Ri

u
� Bi

u� , �50�

where Rijk
k and Ri

u relate to the first and second sum of Eq.
�48�, respectively. Given these three-body operators in above
notation, the total six-body interaction can be conveniently
computed. The implementation of the tensor Hamilton opera-
tor Eq. �14� is completely analogous.

VII. NUMERICAL CONFIRMATION

Using the method outlined in Sec. VI above, the models
in Eqs. �12� and �14� have been solved by exact diagonaliza-
tion on 16-site lattices with periodic boundary conditions.
We start by considering the vector Hamiltonian given by Eq.
�12�. The spectrum is shown in Fig. 3; the points in the
Brillouin zone which label the axis of this figure are shown
in Fig. 2. We find the spectrum to be positive semidefinite
with a doubly degenerate zero-energy state at the � point.
The rest of the spectrum is well separated from the ground

kx

ky

Γ ∆ X

Σ K

M

FIG. 2. �Color online� A plot of the symmetry points in the first
Brillouin zone. The arrows show the path taken in plotting the en-
ergy spectra in Fig. 3 starting from the origin at �= �0,0�.
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state by a gap that is substantial and we believe not due to
finite-size effects in the calculation. This claim is based on
the fact that it exceeds the finite-size level splitting of the
spectrum by a factor of �15. The presence of a gap is ex-
pected between the chiral spin liquid ground state and what
should be a two-spinon excited state. The spinon excitations
of this model will be addressed in future work.

We now discuss the two orthogonal zero-energy eigen-
states. For comparison, we construct the CSL state Eq. �2�
explicitly and find a two-dimensional subspace of functions
with the center-of-mass variable being treated as an external
parameter. We have computed the overlap of the Hamiltonian
ground-state subspace and the CSL subspace and find that
they match perfectly. Therefore, the ground state of this
Hamiltonian is indeed the twofold-degenerate CSL state. Ad-
ditionally, we have only two zero-energy states, by which
follows that the CSL state is the only ground state of the
model, a statement which cannot be achieved analytically.

For the tensor Hamiltonian, however, we find that the
zero-energy subspace is massively degenerate. It of course
contains the CSL in accord with the analytical proof but also
many additional states. While the restriction to small system
sizes prevents us from studying the thermodynamic limit
precisely, our numerical findings indicate that the Hamil-
tonian Eq. �14� does not stabilize the CSL state as the unique
ground state, which thus singles out the model in Eq. �12� to
be subject of further study.

VIII. CONCLUSION

In this work we have shown a method for constructing
parent Hamiltonians for the chiral spin liquid. We have com-
puted the spectra of the Hamiltonians by the use of a kernel-
sweeping method in exact diagonalization. There, for the
Hamiltonian operator composed of the spherical vector com-
ponent of the CSL destruction operator, we observe that the
CSL states are the only ground states of the model. We con-
clude that this model is a promising candidate to also study
the elementary excitations of the model, i.e., spinons, and
many other questions in the field of two-dimensional frac-
tionalization of quantum numbers in spin systems.
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APPENDIX A: TENSOR DECOMPOSITION

The operators � j introduced in Sec. IV may be decom-
posed into irreducible spherical tensors of ranks 1 and 3. We
write these irreducible operators as Tm

q ; q and m correspond
to angular momentum and its z component, respectively. We
wish to write �=�cqTq, where Tq is the collection of all
operators which transform as a spherical tensor of rank q.
Here we have suppressed the site index on the operator �.

The operator in Eq. �7� that is not manifestly the compo-
nent of a vector is Si

zSj
zSk

z, which is a component of a third-
rank Cartesian tensor. In order to keep the notation manage-
able, we start by considering the direct product of two
operators U and V with angular momentum j1 and j2, respec-
tively. An element in the direct product space of these opera-
tors may be written as

Um1

j1 Vm2

j2 = �
j12=�j2−j1�

j1+j2

�
m12=−j12

j12

Cj1

m1
j2

m2
j12

m12Tm12

j12 �A1�

in terms of irreducible spherical tensors Tm12

j12 carrying angu-
lar momentum j12 with z component m12=m1+m2. Equation
�A1� may be inverted to give

Tm12

j12 = �
m1=−j1

j1

�
m2=−j2

j2

Cj1

m1
j2

m2
j12

m12Um1

j1 Vm2

j2 . �A2�

Using these equations, one may construct corresponding
expressions for the product of three vector operators by ap-
plying Eq. �A1� twice

Um1

j1 Vm2

j2 Wm3

j3 = �
j12=−�j1−j2�

j1+j2

�
m12=−j12

j12

Cj1

m1
j2

m2
j12

m12Tm12

j12 Wm3

j3

= �
j12=−�j1−j2�

j1+j2

�
m12=−j12

j12

Cj1

m1
j2

m2
j12

m12 �
j=�j12−j3�

j12+j3

� �
m=−j

j

Cj12

m12
j3

m3
j
mTm

j�j12�. �A3�

The second superscript on the tensor T in the last line distin-
guishes between the different tensors of the same rank that
appear when combining three vector operators; since 1 � 1
� 1=3 � 2 � 2 � 1 � 1 � 1 � 0, there are two rank-2 spherical
tensors and three vector operators that can be formed. For the
case of interest m1=m2=m3=0 and j1= j2= j3=1, the expres-
sion reduces to

0

1

2

Γ ∆ X K M Σ

FIG. 3. Low-energy spectrum of the Hamiltonian �12�, scaled
down to order of unity. There are two E=0 eigenvalues at the �
point.
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UzVzWz = �
j12=0

2

�
j=�j12−1�

j12+1

C1
0

1
0

j12

0 Cj12

0
1
0

j
0T0

j�j12�

= −
1
�3

T0
1�0� −

2
�15

T0
1�2� +�2

5
T0

3, �A4�

which shows that the operator contains only vector and
rank-3 tensor components but no scalar or rank-2 tensor
components. Note that the second index on the rank-3 tensor
has been suppressed since the construction of this object is
unambiguous.

Applying Eq. �A2� twice, the rank-3 tensor component is

T0
3 = �

m12=−2

2

�
m3=−1

1

C2
m12

1
m3

3
0Tm12

2 Wm3

1 , �A5�

= �
m1,m2,m3=−1

1

C2
−m3

1
m3

3
0C1

m1
1
m2

2
−m3Um1

1 Vm2

1 Wm3

1 , �A6�

=
5UzVzWz − �U · V�Wz − �V · W�Uz − �W · U�Vz

�10
,

�A7�

where we have used the fact that the dot product is U ·V
=�m�−1�mUm

1 V−m
1 in the spherical representation. A similar

construction can be used to find the vector operator or one
may note from Eqs. �A4� and �A7� that the vector component
is equivalent to

UzVzWz −�2

5
T0

3 =
�U · V�Wz + �V · W�Uz + �W · U�Vz

5

�A8�

as used in writing down Eq. �11�.
Construction of the remaining �x and y� components of

the vector operator in Eq. �A8� is straightforward since one
merely replaces z with either x or y. In order to construct the
remaining six components of the rank-3 tensor operator one
simply applies Eq. �A2� twice without specifying m=0

Tm
3 = �

m1,m2,m3=−1

1

C2
m−m3

1
m3

3
mC1

m1
1
m2

2
m−m3Um1

1 Vm2

1 Wm3

1 . �A9�

The explicit forms of these components are

T1
3 = −

1

2�30
��5VzWz − V · W�U+ + �5UzWz − U · W�V+

+ �5UzVz − U · V�W+	 , �A10�

T2
3 =

1

2�3
�U+V+Wz + U+VzW+ + UzV+W+	 , �A11�

T3
3 = −

1

2�2
U+V+W+, �A12�

with the remaining three components obtained from T−m
q

= �−1�m�Tm
q �†.

APPENDIX B: SUM RULE

The sum rule used in Sec. V on which the proof that �
destroys the ground-state hinges, is given by

lim
R→	

�
0
�z��R

G�z�zne−�/2�z�2 = 0. �B1�

The sum rule has been first stated in a mathematical frame-
work of coherent-state systems by Perelomov and has later
been rederived by Laughlin;44,45 in this Appendix, we show
how to obtain the sum rule by application of Jacobi’s imagi-
nary transformation. We first consider the related sum

F�c� = lim
R→0

�
0
�z��R

G�z�exp
1

2
cz −

�

2
�z�2� . �B2�

In order to prove the sum rule in Eq. �B1�, we will first show
that F�c�=0 for any value of the parameter c and then use
this to prove Eq. �B1� by taking derivatives of the function
F�c�.

In order to show that F�c�=0, we use the gauge function
G�z� to write Eq. �B2� as two sums, one over the entire
lattice and one over the points z� on the lattice for which
G�z��=−1. As shown in Fig. 2, these sites define a sublattice
with twice the original lattice spacing.

F�c� = �
z

e1/2cz−�/2�z�2 − 2�
z�

e1/2cz�−�/2�z��2. �B3�

Setting z�=2z we can write this as

F�c� = �
z

e1/2cz−�/2�z�2 − 2�
z

ecz−2��z�2, �B4�

where both sums now run over the entire lattice. Writing z
=x+ iy this function can be factored into four sums over the
integers x and y

F�c� = ��
x

e1/2�cx−�x2�
��
y

e1/2�icy−�y2�

− 2��

x

ecx−2�x2
��
y

eicy−2�y2
 . �B5�

In terms of the third Jacobi theta function43

�3�z�
� = �
n=−	

	

ei�n2
e2inz �B6�

this function may be recast as

F�c� = �3��− i
c

4
� i

2

�3�� c

4
� i

2



− 2�3��− i
c

2
�2i
�3�� c

2
�2i
 . �B7�

The fact that the two terms in this expression precisely
cancel is a result of Jacobi’s imaginary transformation46

�3�z�
� =
1

�− i

ez2/i�
�3���

z



� −

1




 �B8�

and the fact that the third Jacobi theta function is even. Ap-
plication of this identity to either product of theta functions
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in Eq. �B7� shows that the two terms precisely cancel, prov-
ing that F�c�=0. This in turn proves the n=0 case of Eq.
�B1� by simply setting c=0. The other instances of the sum
rule are obtained by noting that

1

m!

dm

dcmF�c� = lim
R→	

�
0
�z��R

G�z�zmecze−�/2�z�2. �B9�

Since F�c� is 0 for all values of c, setting c=0 in the above
expression gives the desired result in Eq. �B1�. It should be
noted that this proof can be generalized for arbitrary lattices.
However, for lattice structures with nonorthogonal vectors
spanning the unit cell, a decomposition into Jacobi theta
functions is not possible anymore and to follow the above
line of proof one has to apply the generalized Liouville theo-
rem for two-dimensional Riemann theta functions.47

Corollary to sum rule

We now consider the case where we wish to evaluate a
sum of the form

lim
R→	

�
0��z��R

1

z
A�z�G�z�e−�/2�z�2, �B10�

where A�z� is an analytic function of z. Since it is analytic,
we can expand the function A�z� in a Taylor series

A�z� = �
�=0

	
1

�!
�d�A

dz� �
0
z� �B11�

and, so long as the sum in Eq. �B10� is absolutely conver-
gent, we can interchange the order of the two infinite sums to
obtain

�
�

1

�!
�d�A

dz� �
0
� lim

R→	
�

0��z��R

z�−1G�z�e−�/2�z�2
 . �B12�

All terms for which ��2 immediately vanish from the inte-
rior sum due to the sum rule in Eq. �B1�. The term with �
=0 also vanishes because in that case the summand is an odd
function summed over the entire lattice. Finally the term
with �=1 can be evaluated using the sum rule and is simply
the negative of the value of the summand at z=0 �which is
not included in this sum but is included in Eq. �B1�	. There-
fore, so long as A�z� is chosen so that the sum itself is abso-
lutely convergent

lim
R→	

�
0��z��R

1

z
A�z�G�z�e−�/2�z�2 = �dA

dz
�

0
. �B13�

APPENDIX C: THE FUNCTION A(z)

The ratio of wave-function coefficients appearing in Eq.
�29�

�z1 ¯ zj + x ¯ zM���
�z1 ¯ zj ¯ zM���

�C1�

can be written in terms of the gauge function G�x�, the
Gaussian e−�/2�x�2, and an analytic function of x, A�x�. To see

this we note that this ratio may be written explicitly as

�
�=1

2 ���

L
�Z + x − Z�	


���

L
�Z − Z�	


��
i�j

M �2��

L
�zj + x − zi	


�2��

L
�zj − zi	


G�zj + x�
G�zj�G�x�

�
e�/2��zj + x�2−�zj + x�2	

e�/2�zj
2−�zj�

2	e�/2�x2−�x�2	
G�x�e�/2�x2−�x�2�. �C2�

This simplifies by noting that the exponential terms obey an
addition formula

e�/2��zj + x�2−�zj + x�2	

e�/2�zj
2−�zj�

2	e�/2�x2−�x�2	
= e�/2��x−x��zj+x�zj−zj

��	 �C3�

and the gauge function obeys an addition formula given by

G�zj + x�
G�zj�G�x�

= − e�/2�zj
�x�−zjx�. �C4�

Since the terms involving x� cancel on multiplying the two
expressions in Eqs. �C3� and �C4�, the ratio of coefficients is

�z1 ¯ zj + x ¯ zM���
�z1 ¯ zj ¯ zM���

= − A�x�G�x�e−�/2�x�2, �C5�

where A�x� is an analytic function of x

A�x� = �
�=1

2 ���

L
�Z + x − Z�	


���

L
�Z − Z�	


��
i�j

M �2��

L
�zj + x − zi	


�2��

L
�zj − zi	
 e�/2�x2+x�zj−zj

��	. �C6�

The derivative of this function is given by

dA

dx
= ��

�=1

2
d

dx
ln ���

L
�Z + x − Z�	


+ 2�
i�j

M
d

dx
ln ���

L
�zj − zi + x	
 +

�

2
�2x + zj − zj

���A�x� .

�C7�

Evaluating this at x=0 and noting that A�0�=1 from Eq. �C6�
gives
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�dA

dx
�

0
= �

�=1

2
d

dZ
ln ���

L
�Z − Z�	
 + 2�

i�j

M
d

dzj

�ln ���

L
�zj − zi	
 + N

�

L

zj − zj
�

2L
. �C8�

In terms of the function W�z� introduced in Eq. �17� this may
be written as

�dA

dx
�

0
= �

�=1

2
�

L
W��

L
�Z − Z1	
 + 2�

i�j

M
�

L
W��

L
�zj − zi	
 .

�C9�

The final expression follows from the fact that the center-of-
mass zeroes are constrained to satisfy ��Z�=0 as pointed out
in Sec. II.
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